cs.AI updates on arXiv.org 11月05日 13:18
基于混合框架的守恒量自动发现
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种混合框架,用于从噪声轨迹数据中自动发现守恒量。该框架结合了神经网络、Transformer和符号-数值验证器,并在物理系统中测试有效。

arXiv:2511.00102v1 Announce Type: cross Abstract: The discovery of conservation laws is a cornerstone of scientific progress. However, identifying these invariants from observational data remains a significant challenge. We propose a hybrid framework to automate the discovery of conserved quantities from noisy trajectory data. Our approach integrates three components: (1) a Neural Ordinary Differential Equation (Neural ODE) that learns a continuous model of the system's dynamics, (2) a Transformer that generates symbolic candidate invariants conditioned on the learned vector field, and (3) a symbolic-numeric verifier that provides a strong numerical certificate for the validity of these candidates. We test our framework on canonical physical systems and show that it significantly outperforms baselines that operate directly on trajectory data. This work demonstrates the robustness of a decoupled learn-then-search approach for discovering mathematical principles from imperfect data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

守恒量发现 神经网络 Transformer 物理系统 数据驱动
相关文章