cs.AI updates on arXiv.org 11月05日 13:18
MaGNet:股票预测新模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MaGNet,一种用于股票预测的新型Mamba双超图网络,通过三个关键创新,包括自适应门控机制的MAGE块、特征和股票的二维时空注意力模块以及双超图框架,显著提升了预测性能和投资回报。

arXiv:2511.00085v1 Announce Type: cross Abstract: Stock trend prediction is crucial for profitable trading strategies and portfolio management yet remains challenging due to market volatility, complex temporal dynamics and multifaceted inter-stock relationships. Existing methods struggle to effectively capture temporal dependencies and dynamic inter-stock interactions, often neglecting cross-sectional market influences, relying on static correlations, employing uniform treatments of nodes and edges, and conflating diverse relationships. This work introduces MaGNet, a novel Mamba dual-hyperGraph Network for stock prediction, integrating three key innovations: (1) a MAGE block, which leverages bidirectional Mamba with adaptive gating mechanisms for contextual temporal modeling and integrates a sparse Mixture-of-Experts layer to enable dynamic adaptation to diverse market conditions, alongside multi-head attention for capturing global dependencies; (2) Feature-wise and Stock-wise 2D Spatiotemporal Attention modules enable precise fusion of multivariate features and cross-stock dependencies, effectively enhancing informativeness while preserving intrinsic data structures, bridging temporal modeling with relational reasoning; and (3) a dual hypergraph framework consisting of the Temporal-Causal Hypergraph (TCH) that captures fine-grained causal dependencies with temporal constraints, and Global Probabilistic Hypergraph (GPH) that models market-wide patterns through soft hyperedge assignments and Jensen-Shannon Divergence weighting mechanism, jointly disentangling localized temporal influences from instantaneous global structures for multi-scale relational learning. Extensive experiments on six major stock indices demonstrate MaGNet outperforms state-of-the-art methods in both superior predictive performance and exceptional investment returns with robust risk management capabilities. Codes available at: https://github.com/PeilinTime/MaGNet.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

股票预测 Mamba网络 超图模型 时空注意力 投资回报
相关文章