cs.AI updates on arXiv.org 3小时前
LLMs在约束多目标回归任务中的优化表现研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)作为生成优化器解决约束多目标回归任务,特别是在逆设计领域的性能。研究比较了传统的贝叶斯优化框架和经过微调的LLMs、BERT模型。结果表明,经过微调的LLMs在计算速度上具有优势,且在特定领域具有潜在应用价值。

arXiv:2511.00070v1 Announce Type: cross Abstract: This paper investigates the performance of Large Language Models (LLMs) as generative optimizers for solving constrained multi-objective regression tasks, specifically within the challenging domain of inverse design (property-to-structure mapping). This problem, critical to materials informatics, demands finding complex, feasible input vectors that lie on the Pareto optimal front. While LLMs have demonstrated universal effectiveness across generative and reasoning tasks, their utility in constrained, continuous, high-dimensional numerical spaces tasks they weren't explicitly architected for remains an open research question. We conducted a rigorous comparative study between established Bayesian Optimization (BO) frameworks and a suite of fine-tuned LLMs and BERT models. For BO, we benchmarked the foundational BoTorch Ax implementation against the state-of-the-art q-Expected Hypervolume Improvement (qEHVI, BoTorchM). The generative approach involved fine-tuning models via Parameter-Efficient Fine-Tuning (PEFT), framing the challenge as a regression problem with a custom output head. Our results show that BoTorch qEHVI achieved perfect convergence (GD=0.0), setting the performance ceiling. Crucially, the best-performing LLM (WizardMath-7B) achieved a Generational Distance (GD) of 1.21, significantly outperforming the traditional BoTorch Ax baseline (GD=15.03). We conclude that specialized BO frameworks remain the performance leader for guaranteed convergence, but fine-tuned LLMs are validated as a promising, computationally fast alternative, contributing essential comparative metrics to the field of AI-driven optimization. The findings have direct industrial applications in optimizing formulation design for resins, polymers, and paints, where multi-objective trade-offs between mechanical, rheological, and chemical properties are critical to innovation and production efficiency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 优化 逆设计 多目标回归 AI优化
相关文章