cs.AI updates on arXiv.org 11月05日 13:17
空间推理数据生成框架SpatialTraceGen
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SpatialTraceGen的框架,旨在解决视觉语言模型在复杂空间推理上的难题。该框架通过将大型教师模型的推理过程提炼成高质量的多跳、多工具推理轨迹数据集,并引入自动化验证器,提高了推理数据的准确性。

arXiv:2511.00054v1 Announce Type: cross Abstract: While Vision-Language Models (VLMs) excel in many areas, they struggle with complex spatial reasoning, which requires problem decomposition and strategic tool use. Fine-tuning smaller, more deployable models offers an efficient path to strong performance, but this is hampered by a major bottleneck: the absence of high-quality, step-by-step reasoning data. To address this data-efficiency gap, we introduce SpatialTraceGen, a framework to distill the reasoning processes of a large teacher model into a high-quality dataset of multi-hop, multi-tool reasoning traces. A key innovation is our automated Verifier, which scalably ensures the fidelity of each reasoning step, providing a cost-effective alternative to manual human annotation. On the CLEVR-Humans benchmark, this verifier-guided process improves the average quality score of traces by 17\% while reducing quality variance by over 40\%. SpatialTraceGen delivers a dataset of expert traces, providing the structured, step-by-step examples of tool use necessary for effective fine-tuning and sample-efficient offline reinforcement learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉语言模型 空间推理 数据生成 自动化验证 样本高效
相关文章