arXiv:2511.00049v1 Announce Type: cross Abstract: Accurate and robust weather forecasting remains a fundamental challenge due to the inherent spatio-temporal complexity of atmospheric systems. In this paper, we propose a novel self-supervised learning framework that leverages spatio-temporal structures to improve multi-variable weather prediction. The model integrates a graph neural network (GNN) for spatial reasoning, a self-supervised pretraining scheme for representation learning, and a spatio-temporal adaptation mechanism to enhance generalization across varying forecasting horizons. Extensive experiments on both ERA5 and MERRA-2 reanalysis datasets demonstrate that our approach achieves superior performance compared to traditional numerical weather prediction (NWP) models and recent deep learning methods. Quantitative evaluations and visual analyses in Beijing and Shanghai confirm the model's capability to capture fine-grained meteorological patterns. The proposed framework provides a scalable and label-efficient solution for future data-driven weather forecasting systems.
