cs.AI updates on arXiv.org 3小时前
自监督学习框架提升天气预报准确性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于自监督学习的新框架,利用时空结构提高多变量天气预报,实验表明,该框架优于传统和深度学习方法,为未来数据驱动天气预测系统提供解决方案。

arXiv:2511.00049v1 Announce Type: cross Abstract: Accurate and robust weather forecasting remains a fundamental challenge due to the inherent spatio-temporal complexity of atmospheric systems. In this paper, we propose a novel self-supervised learning framework that leverages spatio-temporal structures to improve multi-variable weather prediction. The model integrates a graph neural network (GNN) for spatial reasoning, a self-supervised pretraining scheme for representation learning, and a spatio-temporal adaptation mechanism to enhance generalization across varying forecasting horizons. Extensive experiments on both ERA5 and MERRA-2 reanalysis datasets demonstrate that our approach achieves superior performance compared to traditional numerical weather prediction (NWP) models and recent deep learning methods. Quantitative evaluations and visual analyses in Beijing and Shanghai confirm the model's capability to capture fine-grained meteorological patterns. The proposed framework provides a scalable and label-efficient solution for future data-driven weather forecasting systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

天气预报 自监督学习 深度学习 时空结构 天气预测模型
相关文章