cs.AI updates on arXiv.org 11月05日 13:16
动态图BERT在金融欺诈检测中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为DynBERG的金融欺诈检测模型,该模型结合了Graph-BERT和GRU层,能够捕捉金融交易网络的动态变化,并在比特币交易数据集上取得了优于现有方法的性能。

arXiv:2511.00047v1 Announce Type: cross Abstract: Financial fraud detection is critical for maintaining the integrity of financial systems, particularly in decentralised environments such as cryptocurrency networks. Although Graph Convolutional Networks (GCNs) are widely used for financial fraud detection, graph Transformer models such as Graph-BERT are gaining prominence due to their Transformer-based architecture, which mitigates issues such as over-smoothing. Graph-BERT is designed for static graphs and primarily evaluated on citation networks with undirected edges. However, financial transaction networks are inherently dynamic, with evolving structures and directed edges representing the flow of money. To address these challenges, we introduce DynBERG, a novel architecture that integrates Graph-BERT with a Gated Recurrent Unit (GRU) layer to capture temporal evolution over multiple time steps. Additionally, we modify the underlying algorithm to support directed edges, making DynBERG well-suited for dynamic financial transaction analysis. We evaluate our model on the Elliptic dataset, which includes Bitcoin transactions, including all transactions during a major cryptocurrency market event, the Dark Market Shutdown. By assessing DynBERG's resilience before and after this event, we analyse its ability to adapt to significant market shifts that impact transaction behaviours. Our model is benchmarked against state-of-the-art dynamic graph classification approaches, such as EvolveGCN and GCN, demonstrating superior performance, outperforming EvolveGCN before the market shutdown and surpassing GCN after the event. Additionally, an ablation study highlights the critical role of incorporating a time-series deep learning component, showcasing the effectiveness of GRU in modelling the temporal dynamics of financial transactions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

金融欺诈检测 Graph-BERT GRU 比特币交易 动态图
相关文章