cs.AI updates on arXiv.org 12小时前
社交媒体灾害评估数据增强策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨针对灾害评估中社交媒体数据的增强技术,通过多模态数据集应用扩散方法与文本处理技术,提高模型分类性能,强调构建更鲁棒的灾害评估系统。

arXiv:2511.00004v1 Announce Type: cross Abstract: Natural disaster assessment relies on accurate and rapid access to information, with social media emerging as a valuable real-time source. However, existing datasets suffer from class imbalance and limited samples, making effective model development a challenging task. This paper explores augmentation techniques to address these issues on the CrisisMMD multimodal dataset. For visual data, we apply diffusion-based methods, namely Real Guidance and DiffuseMix. For text data, we explore back-translation, paraphrasing with transformers, and image caption-based augmentation. We evaluated these across unimodal, multimodal, and multi-view learning setups. Results show that selected augmentations improve classification performance, particularly for underrepresented classes, while multi-view learning introduces potential but requires further refinement. This study highlights effective augmentation strategies for building more robust disaster assessment systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

灾害评估 社交媒体 数据增强 多模态学习 分类性能
相关文章