cs.AI updates on arXiv.org 18小时前
显式知识库提升大语言模型透明度
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为ExplicitLM的新型大语言模型架构,通过外部记忆库存储可读知识,实现知识的直接检查和修改,提升模型的可解释性和知识更新能力。

arXiv:2511.01581v1 Announce Type: new Abstract: Large language models suffer from knowledge staleness and lack of interpretability due to implicit knowledge storage across entangled network parameters, preventing targeted updates and reasoning transparency. We propose ExplicitLM, a novel architecture featuring a million-scale external memory bank storing human-readable knowledge as token sequences, enabling direct inspection and modification. We design a differentiable two-stage retrieval mechanism with efficient coarse-grained filtering via product key decomposition (reducing complexity from $\mathcal{O}(N \cdot |I|)$ to $\mathcal{O}(\sqrt{N} \cdot |I|)$) and fine-grained Gumbel-Softmax matching for end-to-end training. Inspired by dual-system cognitive theory, we partition knowledge into frozen explicit facts (20%) and learnable implicit patterns (80%), maintained through Exponential Moving Average updates for stability. ExplicitLM achieves up to 43.67% improvement on knowledge-intensive tasks versus standard Transformers, with 3.62$\times$ gains in low-data regimes (10k samples). Analysis shows strong correlations between memory retrieval and performance, with correct predictions achieving 49% higher hit rates. Unlike RAG systems with frozen retrieval, our jointly optimized architecture demonstrates that interpretable, updatable models can maintain competitive performance while providing unprecedented knowledge transparency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 知识库 可解释性 知识更新 性能提升
相关文章