cs.AI updates on arXiv.org 11月05日 13:15
C-DAGs扩展:支持循环结构与因果推理
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文扩展了C-DAGs框架,支持任意变量聚类,并放宽了分区可接受性约束,允许循环C-DAG表示,扩展了d分离和因果算术,拓宽了因果推理的范畴。

arXiv:2511.01396v1 Announce Type: new Abstract: Cluster DAGs (C-DAGs) provide an abstraction of causal graphs in which nodes represent clusters of variables, and edges encode both cluster-level causal relationships and dependencies arisen from unobserved confounding. C-DAGs define an equivalence class of acyclic causal graphs that agree on cluster-level relationships, enabling causal reasoning at a higher level of abstraction. However, when the chosen clustering induces cycles in the resulting C-DAG, the partition is deemed inadmissible under conventional C-DAG semantics. In this work, we extend the C-DAG framework to support arbitrary variable clusterings by relaxing the partition admissibility constraint, thereby allowing cyclic C-DAG representations. We extend the notions of d-separation and causal calculus to this setting, significantly broadening the scope of causal reasoning across clusters and enabling the application of C-DAGs in previously intractable scenarios. Our calculus is both sound and atomically complete with respect to the do-calculus: all valid interventional queries at the cluster level can be derived using our rules, each corresponding to a primitive do-calculus step.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

C-DAGs 因果推理 聚类
相关文章