arXiv:2511.01018v1 Announce Type: new Abstract: Recurrent exacerbations remain a common yet preventable outcome for many children with asthma. Machine learning (ML) algorithms using electronic medical records (EMR) could allow accurate identification of children at risk for exacerbations and facilitate referral for preventative comprehensive care to avoid this morbidity. We developed ML algorithms to predict repeat severe exacerbations (i.e. asthma-related emergency department (ED) visits or future hospital admissions) for children with a prior asthma ED visit at a tertiary care children's hospital. Retrospective pre-COVID19 (Feb 2017 - Feb 2019, N=2716) Epic EMR data from the Children's Hospital of Eastern Ontario (CHEO) linked with environmental pollutant exposure and neighbourhood marginalization information was used to train various ML models. We used boosted trees (LGBM, XGB) and 3 open-source large language model (LLM) approaches (DistilGPT2, Llama 3.2 1B and Llama-8b-UltraMedical). Models were tuned and calibrated then validated in a second retrospective post-COVID19 dataset (Jul 2022 - Apr 2023, N=1237) from CHEO. Models were compared using the area under the curve (AUC) and F1 scores, with SHAP values used to determine the most predictive features. The LGBM ML model performed best with the most predictive features in the final AIRE-KIDS_ED model including prior asthma ED visit, the Canadian triage acuity scale, medical complexity, food allergy, prior ED visits for non-asthma respiratory diagnoses, and age for an AUC of 0.712, and F1 score of 0.51. This is a nontrivial improvement over the current decision rule which has F1=0.334. While the most predictive features in the AIRE-KIDS_HOSP model included medical complexity, prior asthma ED visit, average wait time in the ED, the pediatric respiratory assessment measure score at triage and food allergy.
