cs.AI updates on arXiv.org 前天 13:14
EHR预测模型比较研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对比了基于计数的模型、预训练序列转换器和混合代理流程在EHR预测中的性能,并分析了不同模型在不同任务上的表现。

arXiv:2511.00782v1 Announce Type: new Abstract: Structured electronic health records (EHR) are essential for clinical prediction. While count-based learners continue to perform strongly on such data, no benchmarking has directly compared them against more recent mixture-of-agents LLM pipelines, which have been reported to outperform single LLMs in various NLP tasks. In this study, we evaluated three categories of methodologies for EHR prediction using the EHRSHOT dataset: count-based models built from ontology roll-ups with two time bins, based on LightGBM and the tabular foundation model TabPFN; a pretrained sequential transformer (CLMBR); and a mixture-of-agents pipeline that converts tabular histories to natural-language summaries followed by a text classifier. We assessed eight outcomes using the EHRSHOT dataset. Across the eight evaluation tasks, head-to-head wins were largely split between the count-based and the mixture-of-agents methods. Given their simplicity and interpretability, count-based models remain a strong candidate for structured EHR benchmarking. The source code is available at: https://github.com/cristea-lab/Structured_EHR_Benchmark.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EHR预测 模型比较 混合代理流程
相关文章