cs.AI updates on arXiv.org 11月05日 13:14
DTS模型优化LRM推理效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DTS模型,通过选择性地分支和高熵标记应用早期停止,优化大型推理模型(LRM)的推理过程,提高推理效率并保持准确性。

arXiv:2511.00640v1 Announce Type: new Abstract: Large Reasoning Models (LRMs) demonstrate strong performance on complex reasoning tasks, yet they often suffer from overthinking, producing excessively long chain-of-thought (CoT) traces that increase inference cost and may degrade accuracy. Our analysis reveals a clear anti-correlation between reasoning length and accuracy, where across multiple stochastic decodes, the short reasoning paths consistently achieve the highest correctness, while longer ones accumulate errors and repetitions. These short optimal reasoning paths can be found ideally through full enumeration of the reasoning space. However, the tree-structured reasoning space grows exponentially with sequence length, rendering exhaustive exploration infeasible. To address this, we propose DTS, a model-agnostic decoding framework that sketches the reasoning space by selectively branching at high-entropy tokens and applies early stopping to select the shortest completed reasoning path. This approach approximates the optimal solution that enhances both efficiency and accuracy, without requiring additional training or supervision. Experiments on AIME2024 and AIME2025 datasets with DeepSeek-R1-Distill-Qwen-7B and 1.5B show that DTS improves accuracy by up to 8%, reduces average reasoning length by 23%, and decreases repetition frequency by 12%, demonstrating DTS's ability for scalable and efficient LRM reasoning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型推理模型 推理效率 DTS模型
相关文章