machinelearning apple 前天 06:55
Embedding Atlas:简化大规模嵌入可视化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了Embedding Atlas,一款旨在简化大规模嵌入可视化的工具,通过现代Web技术和先进算法,实现快速、丰富的数据分析体验,并通过与现有工具的集成,降低使用摩擦。

Embedding projections are popular for visualizing large datasets and models. However, people often encounter “friction” when using embedding visualization tools: (1) barriers to adoption, e.g., tedious data wrangling and loading, scalability limits, no integration of results into existing workflows, and (2) limitations in possible analyses, without integration with external tools to additionally show coordinated views of metadata. In this paper, we present Embedding Atlas, a scalable, interactive visualization tool designed to make interacting with large embeddings as easy as possible. Embedding Atlas uses modern web technologies and advanced algorithms — including density-based clustering, and automated labeling — to provide a fast and rich data analysis experience at scale. We evaluate Embedding Atlas with a competitive analysis against other popular embedding tools, showing that Embedding Atlas’s feature set specifically helps reduce friction, and report a benchmark on its real-time rendering performance with millions of points. Embedding Atlas is available as open source to support future work in embedding-based analysis.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Embedding Atlas 大规模嵌入可视化 数据分析 Web技术
相关文章