cs.AI updates on arXiv.org 前天 13:20
Transformer模型状态跟踪机制研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了Transformer语言模型在排列组合任务中的状态跟踪机制,揭示了模型如何学习实现高效可解释的状态跟踪机制,并探讨了如何通过中间训练任务引导模型。

arXiv:2503.02854v3 Announce Type: replace-cross Abstract: Transformer language models (LMs) exhibit behaviors -- from storytelling to code generation -- that seem to require tracking the unobserved state of an evolving world. How do they do this? We study state tracking in LMs trained or fine-tuned to compose permutations (i.e., to compute the order of a set of objects after a sequence of swaps). Despite the simple algebraic structure of this problem, many other tasks (e.g., simulation of finite automata and evaluation of boolean expressions) can be reduced to permutation composition, making it a natural model for state tracking in general. We show that LMs consistently learn one of two state tracking mechanisms for this task. The first closely resembles the "associative scan" construction used in recent theoretical work by Liu et al. (2023) and Merrill et al. (2024). The second uses an easy-to-compute feature (permutation parity) to partially prune the space of outputs, and then refines this with an associative scan. LMs that learn the former algorithm tend to generalize better and converge faster, and we show how to steer LMs toward one or the other with intermediate training tasks that encourage or suppress the heuristics. Our results demonstrate that transformer LMs, whether pre-trained or fine-tuned, can learn to implement efficient and interpretable state-tracking mechanisms, and the emergence of these mechanisms can be predicted and controlled.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 状态跟踪 排列组合 训练机制 语言模型
相关文章