cs.AI updates on arXiv.org 前天 13:19
MoI:构建模型解释图,揭示特征模块影响
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MoI的框架,通过构建模型解释图,应用社区检测找到影响预测的特征模块,并量化这些模块与偏差、冗余和因果关系模式的关系。MoI在合成和真实数据集上揭示了相关特征组,通过模块级消融改进了模型调试,并将偏差暴露定位到特定模块。

arXiv:2510.27655v1 Announce Type: cross Abstract: Feature-attribution methods (e.g., SHAP, LIME) explain individual predictions but often miss higher-order structure: sets of features that act in concert. We propose Modules of Influence (MoI), a framework that (i) constructs a model explanation graph from per-instance attributions, (ii) applies community detection to find feature modules that jointly affect predictions, and (iii) quantifies how these modules relate to bias, redundancy, and causality patterns. Across synthetic and real datasets, MoI uncovers correlated feature groups, improves model debugging via module-level ablations, and localizes bias exposure to specific modules. We release stability and synergy metrics, a reference implementation, and evaluation protocols to benchmark module discovery in XAI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型解释 特征模块 XAI
相关文章