cs.AI updates on arXiv.org 11月03日 13:19
FedMuon:联邦学习中的矩阵优化新策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新的联邦学习优化器FedMuon,通过矩阵正交化优化矩阵结构参数,显著减少通信轮次,提高收敛速度。在非独立同分布数据集上,FedMuon通过动量聚合和局部-全局对齐技术,有效减少客户端漂移,提高测试准确率。

arXiv:2510.27403v1 Announce Type: cross Abstract: The core bottleneck of Federated Learning (FL) lies in the communication rounds. That is, how to achieve more effective local updates is crucial for reducing communication rounds. Existing FL methods still primarily use element-wise local optimizers (Adam/SGD), neglecting the geometric structure of the weight matrices. This often leads to the amplification of pathological directions in the weights during local updates, leading deterioration in the condition number and slow convergence. Therefore, we introduce the Muon optimizer in local, which has matrix orthogonalization to optimize matrix-structured parameters. Experimental results show that, in IID setting, Local Muon significantly accelerates the convergence of FL and reduces communication rounds compared to Local SGD and Local AdamW. However, in non-IID setting, independent matrix orthogonalization based on the local distributions of each client induces strong client drift. Applying Muon in non-IID FL poses significant challenges: (1) client preconditioner leading to client drift; (2) moment reinitialization. To address these challenges, we propose a novel Federated Muon optimizer (FedMuon), which incorporates two key techniques: (1) momentum aggregation, where clients use the aggregated momentum for local initialization; (2) local-global alignment, where the local gradients are aligned with the global update direction to significantly reduce client drift. Theoretically, we prove that \texttt{FedMuon} achieves a linear speedup convergence rate without the heterogeneity assumption, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. Empirically, we validate the effectiveness of FedMuon on language and vision models. Compared to several baselines, FedMuon significantly reduces communication rounds and improves test accuracy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 矩阵优化 FedMuon 收敛速度 客户端漂移
相关文章