cs.AI updates on arXiv.org 前天 13:19
FFCA:新型可解释AI模型分析框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FFCA框架,分析模型学习函数的几何结构,提供每个特征的4维特征,并通过动态原型分析跟踪训练过程中的演变,揭示模型学习过程。

arXiv:2510.27207v1 Announce Type: cross Abstract: Explainable AI (XAI) is critical for building trust in complex machine learning models, yet mainstream attribution methods often provide an incomplete, static picture of a model's final state. By collapsing a feature's role into a single score, they are confounded by non-linearity and interactions. To address this, we introduce Feature-Function Curvature Analysis (FFCA), a novel framework that analyzes the geometry of a model's learned function. FFCA produces a 4-dimensional signature for each feature, quantifying its: (1) Impact, (2) Volatility, (3) Non-linearity, and (4) Interaction. Crucially, we extend this framework into Dynamic Archetype Analysis, which tracks the evolution of these signatures throughout the training process. This temporal view moves beyond explaining what a model learned to revealing how it learns. We provide the first direct, empirical evidence of hierarchical learning, showing that models consistently learn simple linear effects before complex interactions. Furthermore, this dynamic analysis provides novel, practical diagnostics for identifying insufficient model capacity and predicting the onset of overfitting. Our comprehensive experiments demonstrate that FFCA, through its static and dynamic components, provides the essential geometric context that transforms model explanation from simple quantification to a nuanced, trustworthy analysis of the entire learning process.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

可解释AI 机器学习模型 FFCA框架
相关文章