cs.AI updates on arXiv.org 11月03日 13:19
LLM跨阶段风险模式分类与防御策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对商业LLM的41种常见风险模式的分类机制,并指出输入的非中性解释可能导致未预期的状态变化。文章倡导采用零信任架构原则,如来源验证、上下文密封和计划重验证,并介绍“Countermind”作为实现这些防御措施的概念性蓝图。

arXiv:2510.27190v1 Announce Type: cross Abstract: As Large Language Models (LLMs) are increasingly integrated into automated, multi-stage pipelines, risk patterns that arise from unvalidated trust between processing stages become a practical concern. This paper presents a mechanism-centered taxonomy of 41 recurring risk patterns in commercial LLMs. The analysis shows that inputs are often interpreted non-neutrally and can trigger implementation-shaped responses or unintended state changes even without explicit commands. We argue that these behaviors constitute architectural failure modes and that string-level filtering alone is insufficient. To mitigate such cross-stage vulnerabilities, we recommend zero-trust architectural principles, including provenance enforcement, context sealing, and plan revalidation, and we introduce "Countermind" as a conceptual blueprint for implementing these defenses.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 风险模式 防御策略 零信任架构 Countermind
相关文章