cs.AI updates on arXiv.org 11月03日 13:19
FMint-SDE:高效差分方程模拟新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为FMint-SDE的多模态基础模型,用于大规模微分方程模拟。该模型通过结合数值和文本模态,实现高效的误差校正,并在多个领域应用中展现优异的性能。

arXiv:2510.27173v1 Announce Type: cross Abstract: Fast and accurate simulation of dynamical systems is a fundamental challenge across scientific and engineering domains. Traditional numerical integrators often face a trade-off between accuracy and computational efficiency, while existing neural network-based approaches typically require training a separate model for each case. To overcome these limitations, we introduce a novel multi-modal foundation model for large-scale simulations of differential equations: FMint-SDE (Foundation Model based on Initialization for stochastic differential equations). Based on a decoder-only transformer with in-context learning, FMint-SDE leverages numerical and textual modalities to learn a universal error-correction scheme. It is trained using prompted sequences of coarse solutions generated by conventional solvers, enabling broad generalization across diverse systems. We evaluate our models on a suite of challenging SDE benchmarks spanning applications in molecular dynamics, mechanical systems, finance, and biology. Experimental results show that our approach achieves a superior accuracy-efficiency tradeoff compared to classical solvers, underscoring the potential of FMint-SDE as a general-purpose simulation tool for dynamical systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FMint-SDE 微分方程模拟 多模态基础模型 误差校正 大规模模拟
相关文章