cs.AI updates on arXiv.org 11月03日 13:19
高分辨率图像描述生成新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合视觉语言模型、大型语言模型和对象检测系统的图像描述生成新方法,有效提高了高分辨率图像描述的准确性和详细性。

arXiv:2510.27164v1 Announce Type: cross Abstract: Vision-language models (VLMs) often struggle to generate accurate and detailed captions for high-resolution images since they are typically pre-trained on low-resolution inputs (e.g., 224x224 or 336x336 pixels). Downscaling high-resolution images to these dimensions may result in the loss of visual details and the omission of important objects. To address this limitation, we propose a novel pipeline that integrates vision-language models, large language models (LLMs), and object detection systems to enhance caption quality. Our proposed pipeline refines captions through a novel, multi-stage process. Given a high-resolution image, an initial caption is first generated using a VLM, and key objects in the image are then identified by an LLM. The LLM predicts additional objects likely to co-occur with the identified key objects, and these predictions are verified by object detection systems. Newly detected objects not mentioned in the initial caption undergo focused, region-specific captioning to ensure they are incorporated. This process enriches caption detail while reducing hallucinations by removing references to undetected objects. We evaluate the enhanced captions using pairwise comparison and quantitative scoring from large multimodal models, along with a benchmark for hallucination detection. Experiments on a curated dataset of high-resolution images demonstrate that our pipeline produces more detailed and reliable image captions while effectively minimizing hallucinations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像描述 视觉语言模型 对象检测
相关文章