cs.AI updates on arXiv.org 前天 13:19
RAG框架提升LLM在网络安全中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于RAG的框架,旨在提高LLM在网络安全领域的知识保留和时序推理准确性,通过实验验证了混合检索在提升LLM适应性和可靠性方面的潜力。

arXiv:2510.27080v1 Announce Type: cross Abstract: Security applications are increasingly relying on large language models (LLMs) for cyber threat detection; however, their opaque reasoning often limits trust, particularly in decisions that require domain-specific cybersecurity knowledge. Because security threats evolve rapidly, LLMs must not only recall historical incidents but also adapt to emerging vulnerabilities and attack patterns. Retrieval-Augmented Generation (RAG) has demonstrated effectiveness in general LLM applications, but its potential for cybersecurity remains underexplored. In this work, we introduce a RAG-based framework designed to contextualize cybersecurity data and enhance LLM accuracy in knowledge retention and temporal reasoning. Using external datasets and the Llama-3-8B-Instruct model, we evaluate baseline RAG, an optimized hybrid retrieval approach, and conduct a comparative analysis across multiple performance metrics. Our findings highlight the promise of hybrid retrieval in strengthening the adaptability and reliability of LLMs for cybersecurity tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG LLM 网络安全 知识保留 时序推理
相关文章