cs.AI updates on arXiv.org 11月03日 13:18
基于语义框架的医疗事件识别方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于语义框架的医疗事件识别方法,应用于电子病历中基于性别暴力的漏报问题,通过在巴西葡萄牙语电子健康记录中搜索21百万句子,定义并验证了8种模式,识别准确率达到0.726,验证了方法的有效性和通用性。

arXiv:2510.26969v1 Announce Type: cross Abstract: We introduce a methodology for the identification of notifiable events in the domain of healthcare. The methodology harnesses semantic frames to define fine-grained patterns and search them in unstructured data, namely, open-text fields in e-medical records. We apply the methodology to the problem of underreporting of gender-based violence (GBV) in e-medical records produced during patients' visits to primary care units. A total of eight patterns are defined and searched on a corpus of 21 million sentences in Brazilian Portuguese extracted from e-SUS APS. The results are manually evaluated by linguists and the precision of each pattern measured. Our findings reveal that the methodology effectively identifies reports of violence with a precision of 0.726, confirming its robustness. Designed as a transparent, efficient, low-carbon, and language-agnostic pipeline, the approach can be easily adapted to other health surveillance contexts, contributing to the broader, ethical, and explainable use of NLP in public health systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语义框架 医疗事件识别 电子病历 基于性别暴力
相关文章