cs.AI updates on arXiv.org 前天 13:18
FedPF:隐私公平联邦学习算法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为FedPF的隐私公平联邦学习算法,旨在解决在保护敏感数据的同时确保不同群体公平性的挑战。理论分析和实验验证表明,该算法在降低歧视的同时保持模型精度,揭示了隐私与公平之间的内在矛盾。

arXiv:2510.26841v1 Announce Type: cross Abstract: Federated Learning (FL) enables collaborative model training without data sharing, yet participants face a fundamental challenge, e.g., simultaneously ensuring fairness across demographic groups while protecting sensitive client data. We introduce a differentially private fair FL algorithm (\textit{FedPF}) that transforms this multi-objective optimization into a zero-sum game where fairness and privacy constraints compete against model utility. Our theoretical analysis reveals a surprising inverse relationship, i.e., stricter privacy protection fundamentally limits the system's ability to detect and correct demographic biases, creating an inherent tension between privacy and fairness. Counterintuitively, we prove that moderate fairness constraints initially improve model generalization before causing performance degradation, where a non-monotonic relationship that challenges conventional wisdom about fairness-utility tradeoffs. Experimental validation demonstrates up to 42.9 % discrimination reduction across three datasets while maintaining competitive accuracy, but more importantly, reveals that the privacy-fairness tension is unavoidable, i.e., achieving both objectives simultaneously requires carefully balanced compromises rather than optimization of either in isolation. The source code for our proposed algorithm is publicly accessible at https://github.com/szpsunkk/FedPF.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 隐私保护 公平性 模型优化 数据共享
相关文章