cs.AI updates on arXiv.org 前天 13:18
检测LLM奖励模型中的前缀偏差
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出方法检测和评估LLM奖励模型中的前缀偏差,揭示偏好模型在种族和性别维度上的显著偏差,并提出数据增强策略以减轻这些偏差。

arXiv:2505.13487v2 Announce Type: cross Abstract: Reinforcement Learning with Human Feedback (RLHF) has emerged as a key paradigm for task-specific fine-tuning of language models using human preference data. While numerous publicly available preference datasets provide pairwise comparisons of responses, the potential for biases in the resulting reward models remains underexplored. In this work, we introduce novel methods to detect and evaluate prefix bias -- a systematic shift in model preferences triggered by minor variations in query prefixes -- in LLM-based reward models trained on such datasets. We leverage these metrics to reveal significant biases in preference models across racial and gender dimensions. Our comprehensive evaluation spans diverse open-source preference datasets and reward model architectures, demonstrating susceptibility to this kind of bias regardless of the underlying model architecture. Furthermore, we propose a data augmentation strategy to mitigate these biases, showing its effectiveness in reducing the impact of prefix bias. Our findings highlight the critical need for bias-aware dataset design and evaluation in developing fair and reliable reward models, contributing to the broader discourse on fairness in AI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 奖励模型 前缀偏差 数据增强 AI公平性
相关文章