cs.AI updates on arXiv.org 10月31日 12:07
合成数据提升LLM识别谬误能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过使用合成数据和轻量级微调技术,研究了大型语言模型在识别谬误方面的能力。通过实验证明,引入合成谬误数据可以显著提升LLM在真实科学信息识别任务中的表现。

arXiv:2510.26345v1 Announce Type: cross Abstract: Health-related misinformation is very prevalent and potentially harmful. It is difficult to identify, especially when claims distort or misinterpret scientific findings. We investigate the impact of synthetic data generation and lightweight fine-tuning techniques on the ability of large language models (LLMs) to recognize fallacious arguments using the MISSCI dataset and framework. In this work, we propose MisSynth, a pipeline that applies retrieval-augmented generation (RAG) to produce synthetic fallacy samples, which are then used to fine-tune an LLM model. Our results show substantial accuracy gains with fine-tuned models compared to vanilla baselines. For instance, the LLaMA 3.1 8B fine-tuned model achieved an over 35% F1-score absolute improvement on the MISSCI test split over its vanilla baseline. We demonstrate that introducing synthetic fallacy data to augment limited annotated resources can significantly enhance zero-shot LLM classification performance on real-world scientific misinformation tasks, even with limited computational resources. The code and synthetic dataset are available on https://github.com/mxpoliakov/MisSynth.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 谬误识别 合成数据 微调技术 科学信息识别
相关文章