cs.AI updates on arXiv.org 10月31日 12:07
后验采样新方法:结合扩散模型与Langevin动力学
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合扩散模型与Langevin动力学的后验采样新方法,适用于局部或全局对数凹分布。该方法在仅需要L4分数误差界的情况下,能够以多项式时间完成条件采样。

arXiv:2510.26324v1 Announce Type: cross Abstract: Given a noisy linear measurement $y = Ax + \xi$ of a distribution $p(x)$, and a good approximation to the prior $p(x)$, when can we sample from the posterior $p(x \mid y)$? Posterior sampling provides an accurate and fair framework for tasks such as inpainting, deblurring, and MRI reconstruction, and several heuristics attempt to approximate it. Unfortunately, approximate posterior sampling is computationally intractable in general. To sidestep this hardness, we focus on (local or global) log-concave distributions $p(x)$. In this regime, Langevin dynamics yields posterior samples when the exact scores of $p(x)$ are available, but it is brittle to score--estimation error, requiring an MGF bound (sub-exponential error). By contrast, in the unconditional setting, diffusion models succeed with only an $L^2$ bound on the score error. We prove that combining diffusion models with an annealed variant of Langevin dynamics achieves conditional sampling in polynomial time using merely an $L^4$ bound on the score error.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

后验采样 扩散模型 Langevin动力学 对数凹分布 条件采样
相关文章