cs.AI updates on arXiv.org 10月31日 12:06
AISP:预logits自适应重要性采样测试时间对齐方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于采样模型预测控制和随机控制输入的测试时间对齐新方法——预logits自适应重要性采样(AISP)。该方法通过在预logits上应用高斯扰动,以最大化与扰动均值相关的期望奖励,并通过重要性采样获得最优均值。实验表明,AISP在样本数量和奖励方面优于其他基于奖励的测试时间对齐方法。

arXiv:2510.26219v1 Announce Type: cross Abstract: Test-time alignment of large language models (LLMs) attracts attention because fine-tuning LLMs requires high computational costs. In this paper, we propose a new test-time alignment method called adaptive importance sampling on pre-logits (AISP) on the basis of the sampling-based model predictive control with the stochastic control input. AISP applies the Gaussian perturbation into pre-logits, which are outputs of the penultimate layer, so as to maximize expected rewards with respect to the mean of the perturbation. We demonstrate that the optimal mean is obtained by importance sampling with sampled rewards. AISP outperforms best-of-n sampling in terms of rewards over the number of used samples and achieves higher rewards than other reward-based test-time alignment methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

预logits 自适应重要性采样 测试时间对齐 模型预测控制 随机控制
相关文章