cs.AI updates on arXiv.org 10月31日 12:06
工业时间序列异常检测:简单模型胜出
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了在多变量工业时间序列中,高级特征工程和混合模型架构对异常检测的有效性,以蒸汽轮机系统为例。研究发现,简单随机森林+XGBoost集成模型在分段数据上优于复杂模型,并强调了在数据不平衡和时间不确定的情况下,模型简单性与优化分割的重要性。

arXiv:2510.26159v1 Announce Type: cross Abstract: In this study, we investigate the effectiveness of advanced feature engineering and hybrid model architectures for anomaly detection in a multivariate industrial time series, focusing on a steam turbine system. We evaluate the impact of change point-derived statistical features, clustering-based substructure representations, and hybrid learning strategies on detection performance. Despite their theoretical appeal, these complex approaches consistently underperformed compared to a simple Random Forest + XGBoost ensemble trained on segmented data. The ensemble achieved an AUC-ROC of 0.976, F1-score of 0.41, and 100% early detection within the defined time window. Our findings highlight that, in scenarios with highly imbalanced and temporally uncertain data, model simplicity combined with optimized segmentation can outperform more sophisticated architectures, offering greater robustness, interpretability, and operational utility.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

异常检测 工业时间序列 模型架构 特征工程 蒸汽轮机
相关文章