cs.AI updates on arXiv.org 10月31日 12:05
构建可靠AI评估指标指南
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨人工智能发展中的责任AI原则,重点分析评估指标稳健性和可靠性,并总结先前关于推荐系统公平性指标的研究成果,为构建可靠的责任AI评估指标提供非详尽性指南。

arXiv:2510.26007v1 Announce Type: cross Abstract: The development of Artificial Intelligence (AI), including AI in Science (AIS), should be done following the principles of responsible AI. Progress in responsible AI is often quantified through evaluation metrics, yet there has been less work on assessing the robustness and reliability of the metrics themselves. We reflect on prior work that examines the robustness of fairness metrics for recommender systems as a type of AI application and summarise their key takeaways into a set of non-exhaustive guidelines for developing reliable metrics of responsible AI. Our guidelines apply to a broad spectrum of AI applications, including AIS.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

责任AI 评估指标 稳健性 可靠性 推荐系统
相关文章