cs.AI updates on arXiv.org 10月31日 12:04
MemEIC:多模态知识编辑新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MemEIC,一种针对大视觉语言模型(LVLMs)的持续和组合知识编辑(CCKE)方法,通过多模态证据检索和参数更新,实现视觉和文本知识的连续编辑,显著提升多模态问题的性能。

arXiv:2510.25798v1 Announce Type: cross Abstract: The dynamic nature of information necessitates continuously updating large vision-language models (LVLMs). While recent knowledge editing techniques hint at promising directions, they often focus on editing a single modality (vision or language) in isolation. This prevalent practice neglects the inherent multimodality of LVLMs and the continuous nature of knowledge updates, potentially leading to suboptimal editing outcomes when considering the interplay between modalities and the need for ongoing knowledge refinement. To address these limitations, we propose MemEIC, a novel method for Continual and Compositional Knowledge Editing (CCKE) in LVLMs. MemEIC enables compositional editing of both visual and textual knowledge sequentially. Our approach employs a hybrid external-internal editor featuring a dual external memory for cross-modal evidence retrieval and dual LoRA adapters that facilitate disentangled parameter updates for each modality. A key component is a brain-inspired knowledge connector, activated selectively for compositional reasoning, that integrates information across different modalities. Experiments demonstrate that MemEIC significantly improves performance on complex multimodal questions and effectively preserves prior edits, setting a new benchmark for CCKE in LVLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态知识编辑 LVLMs MemEIC 持续更新 性能提升
相关文章