cs.AI updates on arXiv.org 10月31日 12:03
MIB-Shared-Task:改进电路发现方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于MIB基准的三项改进电路发现方法,通过自举识别稳定属性得分边、引入比率选择策略以及使用整数线性规划替代贪婪选择,有效提升模型解释性。

arXiv:2510.25786v1 Announce Type: cross Abstract: One of the main challenges in mechanistic interpretability is circuit discovery, determining which parts of a model perform a given task. We build on the Mechanistic Interpretability Benchmark (MIB) and propose three key improvements to circuit discovery. First, we use bootstrapping to identify edges with consistent attribution scores. Second, we introduce a simple ratio-based selection strategy to prioritize strong positive-scoring edges, balancing performance and faithfulness. Third, we replace the standard greedy selection with an integer linear programming formulation. Our methods yield more faithful circuits and outperform prior approaches across multiple MIB tasks and models. Our code is available at: https://github.com/technion-cs-nlp/MIB-Shared-Task.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MIB基准 电路发现 模型解释性 整数线性规划 自举
相关文章