cs.AI updates on arXiv.org 10月31日 12:03
HiMAE:可穿戴健康数据的高效表示学习框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为HiMAE的自监督学习框架,用于分析可穿戴设备收集的生理时间序列数据。通过结合掩码自编码和分层卷积编码器-解码器,HiMAE能够生成多分辨率嵌入,帮助识别不同时间尺度下的预测信号,并在多个基准测试中优于现有模型。

arXiv:2510.25785v1 Announce Type: cross Abstract: Wearable sensors provide abundant physiological time series, yet the principles governing their predictive utility remain unclear. We hypothesize that temporal resolution is a fundamental axis of representation learning, with different clinical and behavioral outcomes relying on structure at distinct scales. To test this resolution hypothesis, we introduce HiMAE (Hierarchical Masked Autoencoder), a self supervised framework that combines masked autoencoding with a hierarchical convolutional encoder decoder. HiMAE produces multi resolution embeddings that enable systematic evaluation of which temporal scales carry predictive signal, transforming resolution from a hyperparameter into a probe for interpretability. Across classification, regression, and generative benchmarks, HiMAE consistently outperforms state of the art foundation models that collapse scale, while being orders of magnitude smaller. HiMAE is an efficient representation learner compact enough to run entirely on watch, achieving sub millisecond inference on smartwatch class CPUs for true edge inference. Together, these contributions position HiMAE as both an efficient self supervised learning method and a discovery tool for scale sensitive structure in wearable health.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

可穿戴设备 表示学习 时间序列分析 HiMAE 健康数据
相关文章