cs.AI updates on arXiv.org 10月31日 12:03
跨平台基础模型推理能力综合评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对当代基础模型在三种计算范式下的推理能力进行综合评估,建立了跨平台的基准,并对15个基础模型在79个问题上的表现进行了全面评估。评估发现,训练数据质量比模型规模更重要,为教育、生产和研究背景下的模型选择提供了实用指南。

arXiv:2510.26732v1 Announce Type: new Abstract: This paper presents a comprehensive cross-platform evaluation of reasoning capabilities in contemporary foundation models, establishing an infrastructure-agnostic benchmark across three computational paradigms: HPC supercomputing (MareNostrum 5), cloud platforms (Nebius AI Studio), and university clusters (a node with eight H200 GPUs). We evaluate 15 foundation models across 79 problems spanning eight academic domains (Physics, Mathematics, Chemistry, Economics, Biology, Statistics, Calculus, and Optimization) through three experimental phases: (1) Baseline establishment: Six models (Mixtral-8x7B, Phi-3, LLaMA 3.1-8B, Gemma-2-9b, Mistral-7B, OLMo-7B) evaluated on 19 problems using MareNostrum 5, establishing methodology and reference performance; (2) Infrastructure validation: The 19-problem benchmark repeated on university cluster (seven models including Falcon-Mamba state-space architecture) and Nebius AI Studio (nine state-of-the-art models: Hermes-4 70B/405B, LLaMA 3.1-405B/3.3-70B, Qwen3 30B/235B, DeepSeek-R1, GPT-OSS 20B/120B) to confirm infrastructure-agnostic reproducibility; (3) Extended evaluation: Full 79-problem assessment on both university cluster and Nebius platforms, probing generalization at scale across architectural diversity. The findings challenge conventional scaling assumptions, establish training data quality as more critical than model size, and provide actionable guidelines for model selection across educational, production, and research contexts. The tri-infrastructure methodology and 79-problem benchmark enable longitudinal tracking of reasoning capabilities as foundation models evolve.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

基础模型 推理能力 跨平台评估 模型选择 训练数据
相关文章