cs.AI updates on arXiv.org 10月31日 12:02
医疗AI:MedSAEs提升医学图像解释性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将Medical Sparse Autoencoders应用于MedCLIP的潜在空间,以提升医疗图像的解释性,并建立了一种综合评估框架。实验表明,MedSAE神经元在CheXpert数据集上比原始MedCLIP特征具有更高的单义性和解释性。

arXiv:2510.26411v1 Announce Type: new Abstract: Artificial intelligence in healthcare requires models that are accurate and interpretable. We advance mechanistic interpretability in medical vision by applying Medical Sparse Autoencoders (MedSAEs) to the latent space of MedCLIP, a vision-language model trained on chest radiographs and reports. To quantify interpretability, we propose an evaluation framework that combines correlation metrics, entropy analyzes, and automated neuron naming via the MedGEMMA foundation model. Experiments on the CheXpert dataset show that MedSAE neurons achieve higher monosemanticity and interpretability than raw MedCLIP features. Our findings bridge high-performing medical AI and transparency, offering a scalable step toward clinically reliable representations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MedSAEs 医疗图像 解释性 MedCLIP CheXpert
相关文章