cs.AI updates on arXiv.org 10月31日 12:01
基于Mistral的NL-to-SQL系统性能提升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于Mistral的NL-to-SQL系统,通过ReAct代理增强文本到SQL的转换,提高了时空查询的准确率和易用性,为非SQL专家用户提供了便捷的数据查询方式。

arXiv:2510.25997v1 Announce Type: new Abstract: Natural-language-to-SQL (NL-to-SQL) systems hold promise for democratizing access to structured data, allowing users to query databases without learning SQL. Yet existing systems struggle with realistic spatio-temporal queries, where success requires aligning vague user phrasing with schema-specific categories, handling temporal reasoning, and choosing appropriate outputs. We present an agentic pipeline that extends a naive text-to-SQL baseline (llama-3-sqlcoder-8b) with orchestration by a Mistral-based ReAct agent. The agent can plan, decompose, and adapt queries through schema inspection, SQL generation, execution, and visualization tools. We evaluate on 35 natural-language queries over the NYC and Tokyo check-in dataset, covering spatial, temporal, and multi-dataset reasoning. The agent achieves substantially higher accuracy than the naive baseline 91.4% vs. 28.6% and enhances usability through maps, plots, and structured natural-language summaries. Crucially, our design enables more natural human-database interaction, supporting users who lack SQL expertise, detailed schema knowledge, or prompting skill. We conclude that agentic orchestration, rather than stronger SQL generators alone, is a promising foundation for interactive geospatial assistants.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NL-to-SQL Mistral ReAct代理 时空查询 易用性
相关文章