cs.AI updates on arXiv.org 10月30日 12:19
多类别分类器校准评估新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种多类别分类器校准评估的新框架——效用校准,通过测量校准误差与特定效用函数的相关性来提高分类器的可信度。

arXiv:2510.25458v1 Announce Type: cross Abstract: Ensuring that classifiers are well-calibrated, i.e., their predictions align with observed frequencies, is a minimal and fundamental requirement for classifiers to be viewed as trustworthy. Existing methods for assessing multiclass calibration often focus on specific aspects associated with prediction (e.g., top-class confidence, class-wise calibration) or utilize computationally challenging variational formulations. In this work, we study scalable \emph{evaluation} of multiclass calibration. To this end, we propose utility calibration, a general framework that measures the calibration error relative to a specific utility function that encapsulates the goals or decision criteria relevant to the end user. We demonstrate how this framework can unify and re-interpret several existing calibration metrics, particularly allowing for more robust versions of the top-class and class-wise calibration metrics, and, going beyond such binarized approaches, toward assessing calibration for richer classes of downstream utilities.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

分类器校准 多类别评估 效用函数
相关文章