cs.AI updates on arXiv.org 10月30日 12:19
自动驾驶系统法规与逻辑集成方法综述
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了将法律和逻辑规范融入自动驾驶系统感知、预测和规划模块的方法,系统探讨了从基于逻辑的框架到计算法律推理方法的技术,强调了其在动态和不确定驾驶环境中的合规性和可解释性。提出了一种分类法,将现有方法按理论基础、架构实现和验证策略进行分类,重点关注解决感知不确定性和融入明确法律规范的方法,以促进技术稳健且法律可辩护的决策。

arXiv:2510.25386v1 Announce Type: cross Abstract: This survey provides an analysis of current methodologies integrating legal and logical specifications into the perception, prediction, and planning modules of automated driving systems. We systematically explore techniques ranging from logic-based frameworks to computational legal reasoning approaches, emphasizing their capability to ensure regulatory compliance and interpretability in dynamic and uncertain driving environments. A central finding is that significant challenges arise at the intersection of perceptual reliability, legal compliance, and decision-making justifiability. To systematically analyze these challenges, we introduce a taxonomy categorizing existing approaches by their theoretical foundations, architectural implementations, and validation strategies. We particularly focus on methods that address perceptual uncertainty and incorporate explicit legal norms, facilitating decisions that are both technically robust and legally defensible. The review covers neural-symbolic integration methods for perception, logic-driven rule representation, and norm-aware prediction strategies, all contributing toward transparent and accountable autonomous vehicle operation. We highlight critical open questions and practical trade-offs that must be addressed, offering multidisciplinary insights from engineering, logic, and law to guide future developments in legally compliant autonomous driving systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自动驾驶 法律规范 逻辑推理 感知模块 预测规划
相关文章