cs.AI updates on arXiv.org 10月30日 12:18
MAHT:多党派自组织团队强化学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MAHT的多党派自组织团队强化学习方法,旨在解决多智能体强化学习中团队协作问题。与现有方法不同,MAHT允许控制智能体与未知的非控制智能体团队进行协作,并通过构建稀疏骨架图和关系建模来捕捉跨团队动态。实验结果表明,MAHT在MPE和StarCraft II任务上优于传统的MARL和AHT方法,且收敛速度更快。

arXiv:2510.25340v1 Announce Type: cross Abstract: Multi-agent reinforcement learning (MARl) has achieved strong results in cooperative tasks but typically assumes fixed, fully controlled teams. Ad hoc teamwork (AHT) relaxes this by allowing collaboration with unknown partners, yet existing variants still presume shared conventions. We introduce Multil-party Ad Hoc Teamwork (MAHT), where controlled agents must coordinate with multiple mutually unfamiliar groups of uncontrolled teammates. To address this, we propose MARs, which builds a sparse skeleton graph and applies relational modeling to capture cross-group dvnamics. Experiments on MPE and starCralt ll show that MARs outperforms MARL and AHT baselines while converging faster.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体强化学习 自组织团队 跨团队协作 关系建模 收敛速度
相关文章