cs.AI updates on arXiv.org 10月30日 12:18
TV-Rec:基于时变卷积的序列推荐模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为TV-Rec的序列推荐模型,通过引入时变卷积滤波器,提高了推荐系统的表达能力和推荐精度,同时降低了计算复杂度。

arXiv:2510.25259v1 Announce Type: cross Abstract: Recently, convolutional filters have been increasingly adopted in sequential recommendation for their ability to capture local sequential patterns. However, most of these models complement convolutional filters with self-attention. This is because convolutional filters alone, generally fixed filters, struggle to capture global interactions necessary for accurate recommendation. We propose Time-Variant Convolutional Filters for Sequential Recommendation (TV-Rec), a model inspired by graph signal processing, where time-variant graph filters capture position-dependent temporal variations in user sequences. By replacing both fixed kernels and self-attention with time-variant filters, TV-Rec achieves higher expressive power and better captures complex interaction patterns in user behavior. This design not only eliminates the need for self-attention but also reduces computation while accelerating inference. Extensive experiments on six public benchmarks show that TV-Rec outperforms state-of-the-art baselines by an average of 7.49%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

序列推荐 时变卷积 推荐系统 图信号处理 模型优化
相关文章