cs.AI updates on arXiv.org 10月30日 12:17
基于低秩神经表示的超波传播数据降维方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种适用于描述超波传播的物理数据的降维方法,通过低秩神经网络表示(LRNR)和超网络框架,从数据中学习低维表示,揭示波传播的新分解方式,并展示其高效推断能力。

arXiv:2510.25123v1 Announce Type: cross Abstract: We present a data-driven dimensionality reduction method that is well-suited for physics-based data representing hyperbolic wave propagation. The method utilizes a specialized neural network architecture called low rank neural representation (LRNR) inside a hypernetwork framework. The architecture is motivated by theoretical results that rigorously prove the existence of efficient representations for this wave class. We illustrate through archetypal examples that such an efficient low-dimensional representation of propagating waves can be learned directly from data through a combination of deep learning techniques. We observe that a low rank tensor representation arises naturally in the trained LRNRs, and that this reveals a new decomposition of wave propagation where each decomposed mode corresponds to interpretable physical features. Furthermore, we demonstrate that the LRNR architecture enables efficient inference via a compression scheme, which is a potentially important feature when deploying LRNRs in demanding performance regimes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

降维 神经网络 超波传播 数据驱动 物理数据
相关文章