cs.AI updates on arXiv.org 10月30日 12:16
癫痫监测:实时检测与预测的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合实时癫痫检测与预测的新方法,通过机器学习分析EEG数据,提高癫痫早期干预和预防效果。

arXiv:2510.24986v1 Announce Type: cross Abstract: In recent years, machine learning has become an increasingly powerful tool for supporting seizure detection and monitoring in epilepsy care. Traditional approaches focus on identifying seizures only after they begin, which limits the opportunity for early intervention and proactive treatment. In this study, we propose a novel approach that integrates both real-time seizure detection and prediction, aiming to capture subtle temporal patterns in EEG data that may indicate an upcoming seizure. Our approach was evaluated using the CHB-MIT Scalp EEG Database, which includes 969 hours of recordings and 173 seizures collected from 23 pediatric and young adult patients with drug-resistant epilepsy. To support seizure detection, we implemented a range of supervised machine learning algorithms, including K-Nearest Neighbors, Logistic Regression, Random Forest, and Support Vector Machine. The Logistic Regression achieved 90.9% detection accuracy with 89.6% recall, demonstrating balanced performance suitable for clinical screening. Random Forest and Support Vector Machine models achieved higher accuracy (94.0%) but with 0% recall, failing to detect any seizures, illustrating that accuracy alone is insufficient for evaluating medical ML models with class imbalance. For seizure prediction, we employed Long Short-Term Memory (LSTM) networks, which use deep learning to model temporal dependencies in EEG data. The LSTM model achieved 89.26% prediction accuracy. These results highlight the potential of developing accessible, real-time monitoring tools that not only detect seizures as traditionally done, but also predict them before they occur. This ability to predict seizures marks a significant shift from reactive seizure management to a more proactive approach, allowing patients to anticipate seizures and take precautionary measures to reduce the risk of injury or other complications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

癫痫监测 机器学习 EEG数据 预测 实时检测
相关文章