cs.AI updates on arXiv.org 10月30日 12:16
KAN-GCN:冰盖模型的高效模拟器
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为KAN-GCN的冰盖模型模拟器,通过在图卷积网络前加入Kolmogorov-Arnold网络,提高了模拟精度和效率。

arXiv:2510.24926v1 Announce Type: cross Abstract: We introduce KAN-GCN, a fast and accurate emulator for ice sheet modeling that places a Kolmogorov-Arnold Network (KAN) as a feature-wise calibrator before graph convolution networks (GCNs). The KAN front end applies learnable one-dimensional warps and a linear mixing step, improving feature conditioning and nonlinear encoding without increasing message-passing depth. We employ this architecture to improve the performance of emulators for numerical ice sheet models. Our emulator is trained and tested using 36 melting-rate simulations with 3 mesh-size settings for Pine Island Glacier, Antarctica. Across 2- to 5-layer architectures, KAN-GCN matches or exceeds the accuracy of pure GCN and MLP-GCN baselines. Despite a small parameter overhead, KAN-GCN improves inference throughput on coarser meshes by replacing one edge-wise message-passing layer with a node-wise transform; only the finest mesh shows a modest cost. Overall, KAN-first designs offer a favorable accuracy vs. efficiency trade-off for large transient scenario sweeps.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

KAN-GCN 冰盖模型 模拟器 图卷积网络 Kolmogorov-Arnold网络
相关文章