cs.AI updates on arXiv.org 10月30日 12:15
基于机器学习的失语症语音数据生成研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究提出两种方法生成失语症语音数据,并通过实验验证其有效性。方法之一采用程序化编程,另一方法利用大型语言模型。结果显示,与人工转录相比,Mistral 7b Instruct模型在生成数据中更好地捕捉到失语症的语言退化特征。

arXiv:2510.24817v1 Announce Type: cross Abstract: In aphasia research, Speech-Language Pathologists (SLPs) devote extensive time to manually coding speech samples using Correct Information Units (CIUs), a measure of how informative an individual sample of speech is. Developing automated systems to recognize aphasic language is limited by data scarcity. For example, only about 600 transcripts are available in AphasiaBank yet billions of tokens are used to train large language models (LLMs). In the broader field of machine learning (ML), researchers increasingly turn to synthetic data when such are sparse. Therefore, this study constructs and validates two methods to generate synthetic transcripts of the AphasiaBank Cat Rescue picture description task. One method leverages a procedural programming approach while the second uses Mistral 7b Instruct and Llama 3.1 8b Instruct LLMs. The methods generate transcripts across four severity levels (Mild, Moderate, Severe, Very Severe) through word dropping, filler insertion, and paraphasia substitution. Overall, we found, compared to human-elicited transcripts, Mistral 7b Instruct best captures key aspects of linguistic degradation observed in aphasia, showing realistic directional changes in NDW, word count, and word length amongst the synthetic generation methods. Based on the results, future work should plan to create a larger dataset, fine-tune models for better aphasic representation, and have SLPs assess the realism and usefulness of the synthetic transcripts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

失语症 语音数据生成 机器学习 语言模型 合成数据
相关文章