cs.AI updates on arXiv.org 10月30日 12:15
社区协作在事实核查中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了在X、Meta、TikTok等平台,事实核查从专家驱动转向社区协作的趋势。提出了一种预测解释说明有效性的框架,并通过实验证明其在现有事实核查系统中的有效性。

arXiv:2510.24810v1 Announce Type: cross Abstract: Fact-checking on major platforms, such as X, Meta, and TikTok, is shifting from expert-driven verification to a community-based setup, where users contribute explanatory notes to clarify why a post might be misleading. An important challenge here is determining whether an explanation is helpful for understanding real-world claims and the reasons why, which remains largely underexplored in prior research. In practice, most community notes remain unpublished due to slow community annotation, and the reasons for helpfulness lack clear definitions. To bridge these gaps, we introduce the task of predicting both the helpfulness of explanatory notes and the reason for this. We present COMMUNITYNOTES, a large-scale multilingual dataset of 104k posts with user-provided notes and helpfulness labels. We further propose a framework that automatically generates and improves reason definitions via automatic prompt optimization, and integrate them into prediction. Our experiments show that the optimized definitions can improve both helpfulness and reason prediction. Finally, we show that the helpfulness information are beneficial for existing fact-checking systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

社区协作 事实核查 数据集 机器学习 有效性预测
相关文章