arXiv:2510.24777v1 Announce Type: cross Abstract: Accurate diagnosis of Alzheimer's disease (AD) is essential for enabling timely intervention and slowing disease progression. Multimodal diagnostic approaches offer considerable promise by integrating complementary information across behavioral and perceptual domains. Eye-tracking and facial features, in particular, are important indicators of cognitive function, reflecting attentional distribution and neurocognitive state. However, few studies have explored their joint integration for auxiliary AD diagnosis. In this study, we propose a multimodal cross-enhanced fusion framework that synergistically leverages eye-tracking and facial features for AD detection. The framework incorporates two key modules: (a) a Cross-Enhanced Fusion Attention Module (CEFAM), which models inter-modal interactions through cross-attention and global enhancement, and (b) a Direction-Aware Convolution Module (DACM), which captures fine-grained directional facial features via horizontal-vertical receptive fields. Together, these modules enable adaptive and discriminative multimodal representation learning. To support this work, we constructed a synchronized multimodal dataset, including 25 patients with AD and 25 healthy controls (HC), by recording aligned facial video and eye-tracking sequences during a visual memory-search paradigm, providing an ecologically valid resource for evaluating integration strategies. Extensive experiments on this dataset demonstrate that our framework outperforms traditional late fusion and feature concatenation methods, achieving a classification accuracy of 95.11% in distinguishing AD from HC, highlighting superior robustness and diagnostic performance by explicitly modeling inter-modal dependencies and modality-specific contributions.
