arXiv:2510.24724v1 Announce Type: cross Abstract: This study presents AmarDoctor, a multilingual voice-interactive digital health app designed to provide comprehensive patient triage and AI-driven clinical decision support for Bengali speakers, a population largely underserved in access to digital healthcare. AmarDoctor adopts a data-driven approach to strengthen primary care delivery and enable personalized health management. While platforms such as AdaHealth, WebMD, Symptomate, and K-Health have become popular in recent years, they mainly serve European demographics and languages. AmarDoctor addresses this gap with a dual-interface system for both patients and healthcare providers, supporting three major Bengali dialects. At its core, the patient module uses an adaptive questioning algorithm to assess symptoms and guide users toward the appropriate specialist. To overcome digital literacy barriers, it integrates a voice-interactive AI assistant that navigates users through the app services. Complementing this, the clinician-facing interface incorporates AI-powered decision support that enhances workflow efficiency by generating structured provisional diagnoses and treatment recommendations. These outputs inform key services such as e-prescriptions, video consultations, and medical record management. To validate clinical accuracy, the system was evaluated against a gold-standard set of 185 clinical vignettes developed by experienced physicians. Effectiveness was further assessed by comparing AmarDoctor performance with five independent physicians using the same vignette set. Results showed AmarDoctor achieved a top-1 diagnostic precision of 81.08 percent (versus physicians average of 50.27 percent) and a top specialty recommendation precision of 91.35 percent (versus physicians average of 62.6 percent).
