cs.AI updates on arXiv.org 10月30日 12:13
BambooKG:基于频率权重的知识图谱优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出BambooKG,通过频率权重优化知识图谱,解决多跳推理问题,有效降低信息丢失,在单跳和多跳推理中优于现有方案。

arXiv:2510.25724v1 Announce Type: new Abstract: Retrieval-Augmented Generation allows LLMs to access external knowledge, reducing hallucinations and ageing-data issues. However, it treats retrieved chunks independently and struggles with multi-hop or relational reasoning, especially across documents. Knowledge graphs enhance this by capturing the relationships between entities using triplets, enabling structured, multi-chunk reasoning. However, these tend to miss information that fails to conform to the triplet structure. We introduce BambooKG, a knowledge graph with frequency-based weights on non-triplet edges which reflect link strength, drawing on the Hebbian principle of "fire together, wire together". This decreases information loss and results in improved performance on single- and multi-hop reasoning, outperforming the existing solutions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识图谱 多跳推理 频率权重 BambooKG 信息优化
相关文章