cs.AI updates on arXiv.org 10月30日 12:13
LLMs辅助命名逻辑规则谓词
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用大型语言模型(LLMs)为逻辑规则中的未命名谓词命名,以改善逻辑理论的易读性、可解释性和可重用性。

arXiv:2510.25517v1 Announce Type: new Abstract: In this paper, we address the problem of giving names to predicates in logic rules using Large Language Models (LLMs). In the context of Inductive Logic Programming, various rule generation methods produce rules containing unnamed predicates, with Predicate Invention being a key example. This hinders the readability, interpretability, and reusability of the logic theory. Leveraging recent advancements in LLMs development, we explore their ability to process natural language and code to provide semantically meaningful suggestions for giving a name to unnamed predicates. The evaluation of our approach on some hand-crafted logic rules indicates that LLMs hold potential for this task.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 逻辑规则 谓词命名 可解释性 可重用性
相关文章