cs.AI updates on arXiv.org 10月30日 12:13
MTIR-SQL:文本到SQL的强化学习新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MTIR-SQL,一种创新的文本到SQL的强化学习框架,通过多轮工具集成推理,提高文本到SQL任务的性能。

arXiv:2510.25510v1 Announce Type: new Abstract: As large language models (LLMs) are increasingly used in Text-to-SQL tasks, Reinforcement Learning (RL) has become a common method for improving performance. Existing methods primarily rely on static execution feedback, which restricts real-time error correction. However, integrating multi-turn tool invocation along with dynamic feedback could significantly improve adaptability and robustness, ultimately enhancing model performance. To address these issues, we propose MTIR-SQL, an innovative Multi-turn Tool-Integrated Reasoning reinforcement learning framework for Text-to-SQL. Our approach introduces an execution-aware multi-turn reasoning paradigm that seamlessly incorporates database execution feedback at each reasoning step, enabling context-sensitive query generation and progressive refinement throughout the reasoning process. The framework extends the GRPO algorithm to accommodate complex multi-turn interaction scenarios. Considering the training instability characteristics of MTIR and the potential for significant Deviation of model distribution from the initial model, we enhance the GRPO algorithm by adding a trajectory filtering mechanism and removing KL loss constraints. Experimental results demonstrate that MTIR-SQL, with 4B parameters, achieves \textbf{64.4}\% accuracy in the BIRD Dev and 84.6% execution accuracy in the SPIDER Dev, significantly outperforming existing approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本到SQL 强化学习 多轮推理
相关文章