machinelearning apple 10月30日 00:52
苹果在EMNLP大会展示最新自然语言处理研究成果
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

苹果公司将参加在苏州举行的EMNLP(自然语言处理经验方法)年度大会,展示其在语音处理科学与技术领域的最新研究进展。大会将于11月4日至9日在线下举行。苹果将在展会期间设立展位,并安排多场研讨会和活动。特别值得关注的是,苹果将现场演示使用MLX框架在Apple silicon设备上进行大规模模型推理和训练,包括在iPhone上微调7B参数LLM,在iPad上生成图像,以及在Mac Studio集群上进行文本生成。此外,苹果的研究人员还将就机器翻译、评估指标以及文本归一化等主题进行演讲和论文展示。

🍎 苹果公司积极参与自然语言处理领域的顶级学术会议EMNLP,展示其在该领域的最新研究和技术实力。此次参会聚焦于语音处理的科学与技术,体现了苹果在推动AI技术前沿发展中的重要角色。

💻 苹果将在大会上演示其自研的MLX框架,该框架专为Apple silicon优化,能够高效地在苹果设备上进行大规模模型的训练和推理。演示内容包括在iPhone上微调大型语言模型(LLM)、在iPad上生成图像,以及在Mac Studio集群上进行文本生成,展现了端侧AI的强大能力。

🗣️ 苹果的研究人员将就“通往机器翻译之路:从人类翻译研究中汲取的经验”这一主题进行海报展示,并参与关于“评估指标的误区——幻觉检测的迷思”的演讲,深入探讨自然语言处理中的关键技术挑战与解决方案。

🌐 此外,苹果还将在研讨会环节介绍“PolyNorm:用于文本转语音的少样本LLM文本归一化技术”,展示其在特定NLP应用领域的创新成果,并有多篇论文被大会接收,涵盖了数据质量对双语语言模型训练的影响等前沿课题。

Apple is presenting new work at the annual Empirical Methods in Natural Language Processing (EMNLP) conference, which takes place in person from November 4 - 9, in Suzhou, China. EMNLP focuses on research surrounding the science and technology of spoken language processing.

Below is the schedule of Apple-sponsored workshops and events at EMNLP 2025.

Jump to a section:

Schedule

Stop by the Apple booth in the Suzhou International Expo Center during exhibition hours. All times listed in CST (Suzhou local time):

    Wednesday, November 5: 09:00 – 18:00Thursday, November 6: 09:00 – 18:00Friday, November 7: 09:00 – 16:00

Schedule

Wednesday, November 5

Thursday, November 6

Friday, November 7

Saturday, November 8

Accepted Papers

AuthorsEileen Pan†, Anna Seo Gyeong Choi†, Maartje ter Hoeve, Skyler Seto, Allison Koenecke†‡

Assessing the Role of Data Quality in Training Bilingual Language Models

Skyler Seto, Maartje ter Hoeve, Maureen de Seyssel, David Grangier

AuthorsNivedha Sivakumar*, Natalie Mackraz*, Samira Khorshidi, Krishna Patel†, Barry-John Theobald, Luca Zappella, Nicholas Apostoloff

AuthorsXinze Wang, Chen Chen, Yinfei Yang, Hong-You Chen, Bowen Zhang, Aditya Pal, Xiangxin Zhu, Xianzhi Du

AuthorsMaureen de Seyssel*, Jie Chi*, Skyler Seto, Maartje ter Hoeve, Masha Fedzechkina, Natalie Schluter

AuthorsAtharva Kulkarni†*, Yuan Zhang, Joel Ruben Antony Moniz*, Xiou Ge, Bo-Hsiang Tseng, Dhivya Piraviperumal, Swabha Swayamdipta†, Hong Yu

AuthorsBrihi Joshi**†, Xiang Ren†, Swabha Swayamdipta†, Rik Koncel-Kedziorski, Tim Paek

AuthorsYajie Li†, Albert Galimov†, Mitra Datta Ganapaneni†, Pujitha Thejaswi†, De Meng, Priyanshu Kumar, Saloni Potdar

AuthorsCongzheng Song, Xinyu Tang

PolyNorm: Few-Shot LLM-Based Text Normalization for Text-to-Speech

Michel Wong, Haotian He, Ali Alshehri, Sophia Kao

AuthorsRik Koncel-Kedziorski, Brihi Joshi†, Tim Paek

AuthorsNikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, Mahyar Najibi

Toward Machine Interpreting: Lessons from Human Interpreting Studies

Matthias Sperber, Maureen de Seyssel, Jayson Bao, Matthias Paulik

Acknowledgements

Saloni Potdar is an Industry Track Chair for EMNLP 2025.

Qingqing Cao and Natalie Schluter are Senior Area Chairs.

Richard Bai, Maartje ter Hoeve, Chao Jiang, Rik Koncel-Kedziorski, and Yizhe Zhang are Area Chairs.

Jason Dong, Lu Ren and Shu W. are Session Chairs.

Richard Bai is a Workshop Co-Organizer for Widening Natural Language Processing (WiNLP).

Maartje ter Hoeve, Katherine Metcalf, and Andrew Silva are Workshop Co-Organizers for Tailoring AI: Exploring Active and Passive LLM Personalization (PALS).

Natalie Schluter and Barry-John Theobald serve on the Workshop Advisory Board for Tailoring AI: Exploring Active and Passive LLM Personalization (PALS).

Maureen de Seyssel is a Workshop Reviewer for Tailoring AI: Exploring Active and Passive LLM Personalization (PALS).

Aswarth Abhilash Dara, Mozhdeh Gheini, and Stephan Peitz are Reviewers for the EMNLP 2025 Industry Track.

Jie Chi, Jason Dong, Qin Gao, Xintong Li, De Meng, Alex Papangelis, Shuwen Qiu, Robin Schmidt, Dayu Wang, and Hong Yu are Reviewers for EMNLP 2025.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EMNLP Apple 自然语言处理 MLX AI Machine Learning NLP Large Language Models On-device AI
相关文章